ODDLS: A new unstructured mesh finite element method for the analysis of free surface flow problems

نویسندگان

  • Julio Garcia-Espinosa
  • Aleix Valls
  • Eugenio Oñate
چکیده

This paper introduces a new stabilized finite element method based on the finite calculus (Comput. Methods Appl. Mech. Eng. 1998; 151:233–267) and arbitrary Lagrangian–Eulerian techniques (Comput. Methods Appl. Mech. Eng. 1998; 155:235–249) for the solution to free surface problems. The main innovation of this method is the application of an overlapping domain decomposition concept in the statement of the problem. The aim is to increase the accuracy in the capture of the free surface as well as in the resolution of the governing equations in the interface between the two fluids. Free surface capturing is based on the solution to a level set equation. The Navier–Stokes equations are solved using an iterative monolithic predictor–corrector algorithm (Encyclopedia of Computational Mechanics. Wiley: New York, 2004), where the correction step is based on imposing the divergence-free condition in the velocity field by means of the solution to a scalar equation for the pressure. Examples of application of the ODDLS formulation (for overlapping domain decomposition level set) to the analysis of different free surface flow problems are presented. Copyright q 2008 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying the Impact of Unstructured Mesh Adaptation on Free Surface Flow Simulations

Engineering offshore problems require a continuous progress in the simulation of systems coupling structures and fluids with interfaces. The needs concern complex interface motions and fluid-structure interaction with slamming. The proposed methodology combines, in a parallel message passing algorithm, a level set based interface tracking, a standard finite element projection method on unstruct...

متن کامل

Seepage Analysis through Rockfill Dams by Finite Element Method in a Fixed Gird

In this paper, Forchheimer equation is used as the constitutive equation for flow through rockfill, and the non-linear two-dimensional governing equation with free surface is solved by a new finite element method in a fixed grid. The model is verified by applying it to different flow conditions. The first scenario, which is assumed to be one-dimensional with analytical solution available for it...

متن کامل

Seepage Analysis through Rockfill Dams by Finite Element Method in a Fixed Gird

In this paper, Forchheimer equation is used as the constitutive equation for flow through rockfill, and the non-linear two-dimensional governing equation with free surface is solved by a new finite element method in a fixed grid. The model is verified by applying it to different flow conditions. The first scenario, which is assumed to be one-dimensional with analytical solution available for it...

متن کامل

COMPUTER SIMULATION OF FLUID FLOW FILLING DURING MOLD USING FINITE VOLUME METHOD

In this investigation, ^5 2-D Finite Volume Method (FVM) with unstructured triangular mesh is developed to simulate the mould filling process. The simulation of fluid flow and track of free surface is based on the Marker And Cell (MAC) technique. This technique has capability ofhandling the arbitrary curved solid boundaries in the casting processes. In order to verify the computational results ...

متن کامل

A balanced-force control volume finite element method for interfacial flows with surface tension using adaptive anisotropic unstructured meshes

A balanced-force control volume finite element method is presented for three-dimensional interfacial flows with surface tension on adaptive anisotropic unstructured meshes. A new balanced-force algorithm for the continuum surface tension model on unstructured meshes is proposed within an interface capturing framework based on the volume of fluid method, which ensures that the surface tension fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008